COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

SMALL TOPOLOGICAL COMPLETE SUBGRAPHS OF "DENSE" GRAPHS

A. KOSTOCHKA and L. PYBER

Received October 2, 1985 Revised September 15, 1986

A graph of *n* vertices and $4^{t^2}n^{1+\epsilon}$ edges contains a TK_t on at most $7t^2 \log t/\epsilon$ vertices. This answers a question of P. Erdős.

0. Introduction

P. Erdős asked the following [2]: Is it true that $G[n, n^{1+\epsilon}]$ contains a subgraph which is nonplanar and has at most $c(\epsilon)$ vertices? Clearly, this problem is equivalent to finding a "small" TK_5 or $TK_{3,3}$ in dense graphs.

W. Mader proved the following basic theorem [4]: There exists a constant

p(t) such that G[n, p(t)n] contains a TK_t .

He also showed $p(t) \le O(2^t)$. On the other hand there are many results on

the girth of graphs with large minimum degree [5], [6].

As a consequence of these results we know that the minimum size of a TK_3 necessarily contained by every $G[n, n^{1+\epsilon}]$ is roughly between $1/\epsilon$ and $2/\epsilon$.

What we prove is the following:

Theorem. Every $G[n, 4^{t^2}n^{1+t}]$ contains a TK_t of size at most $c(\varepsilon, t) \le 7t^2 \log t/\varepsilon$ for all $t \in \mathbb{N}$ and $\varepsilon > 0$.

This result answers the question of Erdős and brings together the above investigations on topological subgraphs and the girth of dense graphs.

Remark. From the results on the girth of graphs it follows that the best possible bound is not smaller then $O(t^2/\varepsilon)$.

Notation. A graph G of n vertices and m edges is denoted by G[n, m]. TK, denotes a topological complete graph of t vertices. $\langle D \rangle_G$ denotes the subgraph of a graph G induced by $D \subset V(G)$. $d_G(x, y)$ is the length of the shortest path between $x, y \in V(G)$.

For $a \in V(G)$ we define the distance classes D_i^a by $D_i^a = \{x | x \in V(G), d_G(x, a) = i\}$ for i = 0, ..., r. The radius of G is defined by

$$rad(G) = \min_{x} \max_{y} d(x, y)$$

and an $x \in V(G)$ for which the maximum is attained is called a *centre* of G.

1. Preliminary lemmas

Lemma 1.1. Let $\varepsilon > \alpha > 0$ then $G[n, cn^{1-\varepsilon}]$ contains a subgraph $H[m, (1/2)cm^{1-\alpha}]$ such that $rad(H) \le 1 + (1/\alpha) \log(\varepsilon/(\varepsilon - \alpha))$.

Proof. We might suppose that $d_G(x) \ge cn^{\varepsilon}$ for all $x \in V(G)$ (otherwise the deletion of x results in a graph with higher average degree). For an arbitrary $a \in V(G)$ we denote the induced subgraphs $\langle D_0^a \cup ... \cup D_i^a \rangle$ by H_i for i=1,...,r. We have $|E(H_i)| \ge (1/2) cn^{\varepsilon} |H_{i-1}|$, for all the G-neighbours of vertices in H_{i-1} are contained by H_i .

Let $l=\min\{i|(c/2)|H_i|^{1+\alpha} \le |E(H_i)|\}$. Setting $H=H_i$ we have to estimate rad $(H) \le l$.

We might suppose $l \ge 2$. For i < l we have $(1/2) c n^{\epsilon} |H_{i-1}| \le (c/2) |H_i|^{1+\alpha}$ therefore $|H_i| \ge (n^{\epsilon} |H_{i-1}|)^{1/(1+\alpha)}$. By induction we obtain

$$|H_i| \geq n^{\varepsilon \left(\frac{1}{1+\alpha} + \dots + \frac{1}{(1+\alpha)}i\right)}.$$

But indeed $n \ge |H_{l-1}|$ and therefore

$$1 \ge \varepsilon \left(\frac{1}{1+\alpha} + \ldots + \frac{1}{(1+\alpha)^{l-1}} \right) = \frac{\varepsilon}{\alpha} \left(1 - \frac{1}{(1+\alpha)^{l-1}} \right),$$

which leads to $\frac{\varepsilon}{\varepsilon - \alpha} \ge (1 + \alpha)^{l-1} \ge 2^{\alpha(l-1)}$.

Lemma 1.2. For $a \in V(G[n, cn^{1+\epsilon}])$ there exists an i such that for $d_i = |\langle D_i^a \cup D_{i+1}^a \rangle|$ we have $|E\langle D_i^a \cup D_{i+1}^a \rangle| \ge (c/2)(d_i)^{1+\epsilon}$.

Proof. Suppose there is no such i. Then $|E\langle D_i^a \cup D_{i+1}^a \rangle| < (c/2)(d_i)^{1+\epsilon} < (c/2)d_in^{\epsilon}$ for all i. Therefore

$$|E(G)| \leq \sum_{i=0}^{r-1} |E\langle D_i^a \cup D_{i+1}^a \rangle| < cn^{\epsilon} ((1/2) \sum_{i=1}^{r-1} d_i) \leq cn^{1+\epsilon},$$

a contradiction.

Lemma 1.3. (Erdős, Gallai [3]). $G[n, t \cdot n]$ contains a path of at least 2t vertices. **Lemma 1.4** (Erdős [1]). A graph G contains a bipartite subgraph B with $|E(B)| \ge (1/2)|E(G)|$.

We make one more trivial observation which however is the key of our proof. **Observation 1.5.** Let G be a bipartite graph, $a \in V(G)$ and suppose there is a path P of 2t vertices in $\langle D_i^a, D_{i+1}^a \rangle$. Let us denote the vertices of P_{2t} by $a_1, b_1, a_2, b_2, \ldots, a_t, b_t$. Then either all the vertices a_i or all the vertices b_i are contained by D_i^a .

2. The proof of the Theorem

Let G be a graph with $|E(G)| \ge 2^{t(t-1)}t \cdot |G|^{1+\varepsilon}$. By Lemma 1.4 it has a bipartite subgraph H_0 with $|E(H_0)| \ge 2^{t(t-1)-1}t \cdot |H_0|^{1+\varepsilon}$.

Let us define the constants ε_i by $\varepsilon_0 = \varepsilon$ and $\varepsilon_{i+1} = \varepsilon_i - \varepsilon/2t^2$ for $i=0,\ldots,t(t-1)$. Indeed we have $\varepsilon_i \ge (1/2)\varepsilon$ for all i. We define a descending series of graphs $G = G_0 \ge H_0 \ge G_1 \ge \dots \ge H_{t(t-1)-1} \ge G_{t(t-1)}$ with $|E(H_i)| \ge 2^{2t(t-1)-2t-1} \times t \cdot |H_i|^{1+\epsilon_i}$ and $|E(G_i)| \ge 2^{2t(t-1)-2t} \cdot t \cdot G_i$, $1+\epsilon_i$ as follows: For $i \ge 1$ G_i is a subgraph of H_{i-1} with

rad
$$(G_i) \le 1 + \frac{1}{\varepsilon_i} \log \left(\frac{\varepsilon_{i-1}}{\varepsilon_{i-1} - \varepsilon_i} \right)$$
.

It can be chosen to have at least $2^{2t(t-1)-2t} \cdot t \cdot |G_t|^{1+\epsilon_t}$ edges by Lemma 1.1. Let us note that rad $(G_i) \le 1 + (2/\epsilon)(1 + 2 \log t)$ follows from $\epsilon_i \ge (1/2)\epsilon$.

For $i \ge 1$ H_i is a subgraph of G_i , induced by two distance classes corresponding to a centre a_i of G_i . It can be chosen to have at least $2^{2t(t-1)-2i-1} \cdot t \cdot |H_i|^{1+\epsilon_i}$ edges by Lemma 1.2.

For the last graph of the series we have $|E(G_{t(t-1)})| \ge t \cdot |G_{t(t-1)}|$ therefore by Lemma 1.3 this graph contains a path P of 2t vertices. We denote the vertices of P by $x_1, y_1, ..., x_t, y_t \cdot P$ is a subgraph of G_i moreover $P \subset H_i$ for all i. Applying 1.5 we find that either all the x_j or all the y_j are in the distance class of G_i which is nearer to the centre a_i (from the two distance classes which induce H_i).

Without loss of generality we might suppose that in at least $\binom{7}{2}$ $G_i(1 \le i \le t(t-1)-1)$, the vertices x_i are in the distance class nearer to a_i .

In each of such G_i -s we might connect two arbitrary vertices x_u and x_v by a path $P_{u,v}$ of length at most 2 rad (G_i) such that $V(P_{u,v}) \cap V(G_{i+1}) = \{x_u, x_v\}$. Let us choose such a path for all pairs u, v such that $1 \le u < v \le t$. These paths have no common inner vertices therefore the union C of them is a TK_t subgraph of G.

The number of vertices in C is at most

$$t + \left(\frac{t}{2}\right) \left(2\left(1 + \frac{2}{\varepsilon}\left(1 + 2\log t\right)\right) - 1\right) \le 7t^2 \log t/\varepsilon$$

as required.

Note added in proof. As E. Szemerédi informed us $c(\varepsilon, t)$ can probably be improved to the optimal $O(t^2/\varepsilon)$ using his regularity lemma.

References

- [1] P. Erdős, On bipartite subgraphs of a graph, (in Hungarian) Matematikai Lapok, 18 (1967). 283-288.
- [2] P. Erdős, Some Unsolved Problems in Graph Theory and Combinatorial Analysis, Combinatorial Mathematics and its Applications (Proc. Conf. Oxford (1969), 97-109. Academic Press London, 1971.
- [3] P. ERDŐS and T. GALLAI, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), 337-356.
- [4] W. MADER, Hinreichende Bedingungen für die Existenz von Teilgraphen die zu einem vollständigen Graphen homöomorph sind, Math. Nachr., 53 (1972), 145-150.

- [5] N. SAUER, Extremaleigenschaften regularer Graphen gegebener Taillenweite, I. and II. Sitzungberichte Österreich Akad. Wiss. Math. Natur. Kl. S-B II., 176 (1967), 9—25 ibid 176 (1967), 27—43.
- [6] W. T. Tutte, A family of cubical graphs, Proc. Cambridge. Philos, Soc., 43 (1947), 459-474.

L. Pyber

Mathematical Institute of the Hungarian Academy of Sciences Budapest, PO Box 127 1364 Hungary

A. V. Kostochka

Institute of Mathematics 630090 Novosibirsk-90 Universitetski pr. 4 USSR